The Difference Between
Failure and Success is +1

loan Raicu
Computer Science Department, lllinois Institute of Technology
Math and Computer Science Division, Argonne National Laboratory

September 3¢, 2015
1st Workshop on E-science ReseaRch leading tO negative Results (ERROR) 2015

DaiaSys:
Data-Intensive Distribg“ted afaﬁiﬁfOﬂQiVO iSiﬁbUied
Systems Laboratory™s SYSfemS LabOi'afOTy

DataSys

« Research Focus

— Emphasize designing, implementing, and evaluating systems,
protocols, and middleware with the goal of supporting data-intensive
applications on extreme scale distributed systems, from many-
core systems, clusters, grids, clouds, and supercomputers

* People (15)
— 1 Faculty member g
— 4 PhD students
— 4 MS students
— 4 UG student
— 2 HS students

e Contact
— http://datasys.cs.iit.edu/
— jraicu@cs.iit.edu

DataSys Group
Decem 2014

The Difference Between Failure and Success is +1

Tenure-Track and Teaching Faculty Positions
in CS at lllinois Institute of Technology

ﬂ" B

H_LINOIS1NSTITUTE AN
OF TECANOLOGY.

Failure is Common

| CAN
AGCEPT
“He, who falls nine FAILURE
times and gets up Eﬁi‘j‘.’l’!ﬁf“&sﬁﬁmﬁﬁt"rﬁ

®succoed AGCEPT
NOT
TRYING

Many Examples
Electric Cars

- First practical electric i |
car built by Thomas ~ §lf
Parker [1884] B

M =

= A Y
.
. s

\
\

-
, e £l
o
% = 2§ et
" o ke

, £/
\‘ | \ \ ‘

’’’’’’

Q

« German electric car
[1904]

s —
\ v A 2
P - "
» g \
v \
! ~
. T #

AP . .
 Difference Between Failure and Success is +1

+ 1900:

— 40% Steam Power
— 38% Electric
— 22% Gasoline

* 1914

— 99% Gasoline
— 1% Electric (by 1920, it was 0%)

« 2015

— 99% Internal combustion
— 1% Electric (but rising fast)

The Difference Between Failure and Success is +1

Many Examples
Electric Cars

* 100+ years later with very little progress
* Tesla Model S [2012]

Many examples
Tablet Computers

* Apple Newton [1993]

* Windows Tablet PC [2001]

The Difference Between Failure and Success is +1

Many Examples
Tablet Computiers

‘o

Apple iPad [2010]

/

The Difference Between Failure and Success is +

What Is Research?

 Research comprises "creative work undertaken
on a systematic basis in order to increase the
stock of knowledge,... and the use of this stock
of knowledge to devise new applications.” It is
used to establish or confirm facts, reaffirm the
results of previous work, solve new or existing
problems, support theorems, or develop new
theories. [Wikipedia]

The Difference Between Failure and Success is +1

What does Research mean to me?

1 research(problem)

2 {

2 while (ERROR)

3 {

4 Learn what others have done, including yourself

5 Brainstorm on things others/yourself could have done better
6 Devise solution for improvements (theory, sim., or systems)
V4 Implement solution

8 Evaluate solution

9 Compare against state of the art

10 }

11 Publish positive results

12)

The Difference Between Failure and Success is +1

What does Research mean to me?

It means that research is done over the course
of many iterations, and often takes many years

Often times only positive results are published
(after likely many failures along the way)

It is these failures that make us better
researchers, as they teach us important lessons

Everyone fails all the time, but the difference
between the winners and the losers is how
quickly they get back up, learn from their failure,
and try again!

The Difference Between Failure and Success is +1

Research Methodology

* ldentify some PROBLEM from the scientific

computing community

— Most often = build a system to solve the PROBLEM

— Increasingly often =» use simulations to study complex
systems that could solve the PROBLEM, aiming to learn
iInsights into how to build the real system later

— Sometimes = use theory to prove certain properties of the
systems we have implemented, or that we want to implement

— Apply techniques across a range of distributed systems, from
many-core platforms, to clusters, grids, supercomputers,
and clouds

— Many collaborators who work in language design, computer
architecture, networking, theory, and domain scientists

What am | well known for?
Many-Task Computing

 Many-Task Computing (MTC)
— Bridge between high-throughput computing (HTC) and

high-performance computing (HPC)
 Examples of MTC systems are parallel
programming systems

— Swift parallel scripting language
— Others: Hadoop, Spark, Charm++, Legion, Pegasus,

Taverna, Nimrod, and many others

The Difference Between Failure and Success is +1

Swift script Falkon services on
: BG/P I/0 processors

BG/P processor sets

« “ k 4] S| S|] | -
[[[] S | S| S Ak 4N 4

rhr hhh 7

LJLJLA | | &

rr*r ﬁhh 7Y

L AN AL 4 L AN 4
« L AN 4; JL An S JL An
L V| | & | | &

[‘rﬂrﬂrﬂrﬁ T L L
A 4h A 4N 4 nodAn AN A AN

Falkon dlient

(load balancing)
Shared

global
file system

Scientific Computing Applications

Field Description Characteristics Status
Astronomy Creation of montages from many digital images Many 1-core tasks, much communication, complex Experimental
dependencies
Astronomy Stacking of cutouts from digital sky surveys Many 1-core tasks, much communication Experimental

Biochemistry*

Analysis of mass-spectrometer data for post-
translational protein modifications

10,000-100 million jobs for proteomic searches using
custom serial codes

In development

Biochemistry* Protein structure prediction using iterative fixing | Hundreds to thousands of 1- to 1,000-core simulations | Operational
algorithm; exploring other biomolecular and data analysis
interactions

Biochemistry* Identification of drug targets via computational Up to 1 million 1-core docking operations Operational

docking/screening

Bioinformatics™*

Metagenome modeling

Thousands of 1-core integer programming problems

In development

Business
economics

Mining of large text corpora to study media bias

Analysis and comparison of over 70 million text files of
news articles

In development

Climate science

Ensemble climate model runs and analysis of
output data

Tens to hundreds of 100- to 1,000-core simulations

Experimental

Economics* Generation of response surfaces for various eco- | 1,000 to 1 million 1-core runs (10,000 typical), then Operational
nomic models data analysis
Neuroscience* Analysis of functional MRI datasets Comparison of images; connectivity analysis with Operational

structural equation modeling, 100,000+ tasks

Radiology Training of computer-aided diagnosis algorithms | Comparison of images; many tasks, much In development
communication
Radiology Image processing and brain mapping for neuro- Execution of MPI application in parallel In development

surgical planning research

Note: Asterisks indicate applications being run on Argonne National Laboratory’s Blue Gene/P (Intrepid) and/or the TeraGrid Sun Constellation at the University of Texas at Austin (Ranger).

A Decade of Research in Scheduling
2007 - 2015

Centralized light-weight MTC scheduling: Falkon [2007]

Centralized data-aware MTC scheduling: Falkon with Data-
Diffusion [2008]

Distributed MTC scheduling simulations: SimMatrix [2013]
Distributed MTC scheduling: MATRIX, CloudKon [2013]
MTC scheduling on accelerators: GeMTC [2014]

Distributed data-aware MTC scheduling: MATRIX v2.0
[2014]

Distributed HPC scheduling simulations: SimSlurm++ [2014]
Distributed HPC scheduling: CloudKon, Slurm++ [2014]
Distributed data-aware HPC scheduling: [*2015]

The Difference Between Failure and Success is +1

A Decade of Research in Scheduling
2007
« Swift could easily generate big workflows

— Parallel for loop that iterated over a dataset with 1000
files; but the 1000 could be millions, or even billions

— Each iteration could be a separate job or task

— Swift would interact with grids and supercomputers
through standard job submission (e.g. GRAM, Condor)

* |In 2007, batch scheduled systems could do O(1)

job per second
— This limited the granularity of the task/jobs in the
workflow, and/or concurrency that could be achieved

— Job submission costs, and unpredictable queue times
would often dominate the workflow execution time

The Difference Between Failure and Success is +1

A Decade of Research in Scheduling
2007
* To fix the job scheduling problems of 2007 = Falkon

— Focused on the critical functionality (e.g. light-weight
scheduler to handle many single core/node jobs efficiently)

— Made lightweight by removing resilience, removed HPC-
support, and focusing on memory-resident scheduling

— Avoided unpredictable job queue times by pilot-job
abstractions (schedulers within schedulers)

« Falkon achieved 500+ tasks/sec [SCO7]

« Swift made significant progress in increasing scales
to 100s of nodes and decreasing task granularity to
seconds with good efficiency (1~2 orders of
magnitude improvement)

The Difference Between Failure and Success is +1

A Decade of Research in Scheduling
2008
 The IBM BlueGene/P Supercomputer comes online;

goal is to run Swift on 40K nodes with 160K cores

— Centralized architecture breaks down O(10K-nodes/cores)

« Cost (both memory and processing power) of having 10K sockets
open and active

« Cost of scheduling, hence the task granularity suffers

* Resilience becomes more important

« Stable operation up to 1K-nodes/cores

— Change Falkon architecture to be hierarchical
« Allowed near linear scalability at the expense of higher latency in
short tasks
« Potential for load imbalance due to early task placement
commitment (long tailed experiments)
* Achieved 3000+ tasks/sec at 160K-core scales [SCO08]

The Difference Between Failure and Success is +1

A Decade of Research in Scheduling
2009
* Once scheduling costs were reduced, storage

began being the primary bottleneck

— Storage was remote, leading to high latency
— Network is a shared resource, and hence not scalable

— File system metadata is centralized leading to extremely
poor performance for metadata intensive workloads
* In 2009 we extended Falkon with data-diffusion
[HPDCO09]
— Investigated leveraging many local disks on nodes

— Kept a centralized index for data management
— Extended centralized Falkon scheduler to be data-aware

* This work spawned my interests in storage systems

A Decade of Research in Scheduling
Centralized =2 Distributed

Needed support for finer granularity tasks (sub-

second) at extreme scales (1M-cores/nodes)

— Needed to support orders of magnitude higher tasks/sec
throughput performance

— Completely decentralized techniques (e.g. work stealing)

— Load balancing goes from trivial in centralized Falkon to a
complex and brittle problem

The Difference Between Failure and Success is +1

A Decade of Research in Scheduling
2009 - 2014
« 2009: began work on Falkon v2.0 extending the

hierarchical system

« 2010: gave up on Falkon, and started from scratch on a
system called MATRIX to study work stealing

« 2012: no concrete publishable results on MATRIX, and |
turned to simulations (SimMatrix)

« 2012: Reboot with a clean slate design using ZHT (a
distributed key/value store) as a building block

« 2013: Publications on both SimMatrix [HPC13] (up to 1M-
nodes) and MATRIX[IIT MS13] (up to 1K-cores)

« 2014: Distributed scheduling using message queues (as
opposed to key/value stores) = CloudKon [CCGrid 2014]

The Difference Between Failure and Success is +1

A Decade of Research in Scheduling
2014 - 2015
« 2014: HPC workloads with Slurm++ [HPDC14,

HPDC15]

« 2014: Distributed Data-aware scheduling
[BigData14, CCPE195]

« 2015: Investigated He
MATRIX [Cluster15]

e 2015: PhD defense fc

— Scalable Resource Ma
Extreme-Scale DistribL

The Difference Between Failure and Success is + |

A Decade of Research in Scheduling
2016 and Beyond
* Prototypes to production systems

« Data-aware HPC scheduling to support burst
buffer based HPC architectures

* Cross pollinate between supercomputing and
cloud research = Big Data in cloud computing
has the potential for some very big impact for
many disciplines

* Many companies in industry are jumping on board

— Microsoft announced the acquisition of Mesosphere $1B
[August 2019]

— |IBM announced the commitment of 3500 researchers
and developers to Spark

A Decade of Research in Scheduling
2016 and Beyond

 Commercialization
— Hadoop valued at $1B in 2012, estimated to be
$20B in 2018
— Microsoft announced the acquisition of
Mesosphere $1B [August 2015]

— IBM announced the commitment of 3500
researchers and developers to Spark based
projects/products [2015]

The Difference Between Failure and Success is +1

A Decade of Research in Storage
2008 - 2015

Centralized object store: Data-Diffusion in Falkon [2008]
Hybrid file systems: HyCache [2013]
Distributed key/value store: ZHT [2013]

Distributed file system: FusionFS [2014]

— Distributed metadata management [2014]

— Information dispersal algorithms: IStore [2013]
— Provenance: FusionProv [2013]

— Cooperative caching: HyCache+ [2014]

— Dynamic compression: Virtual Chunks[2014]
— Distributed Indexing [*2015]

— Simulations: FusionSim [2015]

Distributed graph database: Graph/Z [2015]
Distributed relational databases: HRDBMS [2015]
Distributed message queues: Fabriq [*2015]
Multi-path network protocol simulations [*2015]

Dongfang Zhao
PhD 2015
B ===

Tonglin Li

The Difference Between Failure and Success is +1 Ph D 20 1 5*

A Decade of Research in Storage
2016 and Beyond

Commercialization

— Redhat acquires Inktank (the company behind
Ceph) for $175M in 2014

— Intel invests $38M in Databricks (used to
accelerated Spark) [2015]

— Cleversafe develops novel erasure coded large-
scale storage systems over the course of a
decade ($100M in venture capital so far) [2004 —
20195]

The Difference Between Failure and Success is +1

Difierence beiween
Failure and Success?
Persistence to try one more time (+1)
Learn from mistakes
Collaborate to gain knowledge faster

Surround yourself with smart people

Narrow scope of problem/solution until
successful; then broaden scope

Use trends to help predict potential
problems and/or solutions

Be passionate about your work

The Difference Between Failure and Success is +1

* More information:
— http://www.cs.lit.edu/~iraicu/

— http://datasys.cs.iit.edu/
« Contact:
—iraicu@cs.iit.edu
* Questions?

The Difference Between Failure and Success is +1

